当前位置: 首页» 研究生教育» 导师队伍» 硕士生导师» 生物防治学

束长龙

文章来源:研究生工作处       

束长龙,博士,研究员

联系方式:

 电话,010-62812642

 Email:shuchanglong@caas.cn

 地址:北京市海淀区圆明园西路2号 中国农业科学院植物保护研究所5号楼

主要学历

 2010.09 – 2013.07 东北农业大学,获理学博士学位

 2005.09 – 2008.07 中国农业科学院植物保护研究所,获农学硕士学位

 1999.09 – 2003.07 东北农业大学,获理学学士学位

学术任职

[1] 第十届全国农药登记评审委员会委员

[2] 第十届农业农村部肥料登记评审委员会委员

[3] 期刊《Toxins》专题顾问委员会委员

研究方向

以生态系统中可以高效转化植物凋落物,产生生物腐殖酸的白星花金龟为研究对象,探索其在农业废弃物资源化利用、耕地土壤生态修复、昆虫蛋白生产、植物保护等方面的应用,具体研究内容包括以下几个方面:

[1] 开展白星花金龟遗传学开展研究,测定基因组,绘制白星花金龟遗传图谱,明确其发育控制、关键生物学特性相关功能基因;在此基础上开展定向育种、遗传改造研究,培育飞行能力缺失、秸秆转化能力强的新品种。

[2] 开展白星花金龟营养学研究,探索其高效转化秸秆等农业废弃物、获取物质与能量,积累蛋白与脂肪的机制;并研究食物营养对成虫寿命、繁殖效率的影响与机制。在此基础上建立白星花金龟高效养殖技术体系。

[3] 开展白星花金龟相关微生物生态学研究:a.分析白星花金龟相关微生物菌群对其取食、发育、对抗病原及寄生虫的作用及机制,在此基础上开发微生物菌剂,提升白星花金龟生产效率;b.探明白星花金龟转化秸秆产生的生物腐殖酸及虫粪菌群对土壤微生物生态、作物生长的影响及机制,开发土壤微生态调控产品。

[4] 系统研究白星花金龟疾病及寄生虫:a.对各病原、寄生虫进行鉴定,研究其生物学特性,制定防治技术及产品;b.测试各病原对金龟甲科植食性、为害作物的金龟子种类(例如:大黑鳃金龟、暗黑鳃金龟)的致病效果,开发生物防治产品。

在研项目

[1] 国家自然科学基金(面上项目),“白星花金龟幼虫转化玉米秸秆形成腐殖酸的机制研究,32070511”,2021年1月至2024年12月,项目负责人

[2] 国家重点研发计划项目,“秸秆高效循环固碳和高值化产品制备关键技术及产业化,2023YFD1701500”,2023年12月至2027年12月,子课题负责人

[3] 国家重点研发计划项目,“中欧农作物病虫害综合治理关键技创新合作研究,2023YFE0104800”2023年10月至2026年09月,子课题负责人

[4] 新疆自治区重点研发专项,“基于昆虫生物转化的农田残膜回收混合物分离技术及其产业化,2022B02046”,2022年12月至2026年12月,子课题负责人

[5] 植物病虫害综合治理全国重点实验室揭榜挂帅专项,“土壤微生态抗病虫机制及改良产品创制”,2022年11月至2025年12月,项目负责人

研究成果

在植保所任职以来,申请专利近百件,其中第一发明人申请专利30项(含PCT专利1项),获得专利授权22项;发表研究论文100余篇,其中SCI论文60余篇,第一作者/通讯作者论文30余篇;相关成果获得福建省科技进步奖二等奖3项。

获得奖项

[1] 福建省科学技术进步二等奖(第三完成人)

[2] 中国农药工业协会农药创新一等奖(第四完成人)

[3] 大北农科技奖二等奖(第六完成人)

部分发表论文

[1] Xu W, Sun X, Mi L, Wang K, Gu Z, Wang M, Shu C, Bai X, Zhang J, Geng L. Plants recruit insecticidal bacteria to defend against herbivore attacks. Microbiol Res. 2024 Jan 11;281:127597. doi: 10.1016/j.micres.2023.127597. [Epub ahead of print] PubMed PMID: 38266597.

[2] Gao P, Wang K, Qi C, Chen K, Xiang W, Zhang Y, Zhang J, Shu C. A New Method for Discovering Plant Biostimulants. Plants (Basel). 2023 Dec 23;13(1). doi: 10.3390/plants13010056. PubMed PMID: 38202363; PubMed Central PMCID: PMC10780382.

[3] Cao B, Sun X, Shu C, Geng L, Zhang J. Identification and functional characterization of eight novel tpp family genes from Bacillus thuringiensis. Pest Manag Sci. 2023 Nov;79(11):4244-4253. doi: 10.1002/ps.7620. Epub 2023 Jul 5. PubMed PMID: 37340998.

[4] Xue B, Wang M, Wang Z, Shu C, Geng L, Zhang J. Analysis of Synergism between Extracellular Polysaccharide from Bacillus thuringensis subsp. kurstaki HD270 and Insecticidal Proteins. Toxins (Basel). 2023 Sep 28;15(10). doi: 10.3390/toxins15100590. PubMed PMID: 37888621; PubMed Central PMCID: PMC10610938.

[5] Mi L, Gu Z, Li Y, Xu W, Shu C, Zhang J, Bai X, Geng L. Enterobacter Strain IPPBiotE33 Displays a Synergistic Effect with Bacillus thuringiensis Bt185. Int J Mol Sci. 2023 Sep 16;24(18). doi: 10.3390/ijms241814193. PubMed PMID: 37762496; PubMed Central PMCID: PMC10531557.

[6] Wang K, Shu C, Bravo A, Soberón M, Zhang H, Crickmore N, Zhang J. Development of an Online Genome Sequence Comparison Resource for Bacillus cereus sensu lato Strains Using the Efficient Composition Vector Method. Toxins (Basel). 2023 Jun 12;15(6). doi: 10.3390/toxins15060393. PubMed PMID: 37368694; PubMed Central PMCID: PMC10301656.

[7] Fu Q, Cao D, Sun J, Liu X, Li H, Shu C, Liu R. Prediction and bioactivity of small-molecule antimicrobial peptides from Protaetia brevitarsis Lewis larvae. Front Microbiol. 2023;14:1124672. doi: 10.3389/fmicb.2023.1124672. eCollection 2023. PubMed PMID: 37007486; PubMed Central PMCID: PMC10060639.

[8] Du B, Xuan H, Geng L, Li W, Zhang J, Xiang W, Liu R, Shu C. Microflora for improving the Auricularia auricula spent mushroom substrate for Protaetia brevitarsis production. iScience. 2022 Nov 18;25(11):105307. doi: 10.1016/j.isci.2022.105307. eCollection 2022 Nov 18. PubMed PMID: 36300006; PubMed Central PMCID: PMC9589201.

[9] Du S, Zhang Y, Shen JP, Hu HW, Zhang J, Shu C, He JZ. Alteration of Manure Antibiotic Resistance Genes via Soil Fauna Is Associated with the Intestinal Microbiome. mSystems. 2022 Aug 30;7(4):e0052922. doi: 10.1128/msystems.00529-22. Epub 2022 Aug 8. PubMed PMID: 35938729; PubMed Central PMCID: PMC9426575.

[10] Cao B, Nie Y, Guan Z, Chen C, Wang N, Wang Z, Shu C, Zhang J, Zhang D. The crystal structure of Cry78Aa from Bacillus thuringiensis provides insights into its insecticidal activity. Commun Biol. 2022 Aug 9;5(1):801. doi: 10.1038/s42003-022-03754-6. PubMed PMID: 35945427; PubMed Central PMCID: PMC9363482.

[11] Wang K, Gao P, Geng L, Liu C, Zhang J, Shu C. Lignocellulose degradation in Protaetia brevitarsis larvae digestive tract: refining on a tightly designed microbial fermentation production line. Microbiome. 2022 Jun 13;10(1):90. doi: 10.1186/s40168-022-01291-2. PubMed PMID: 35698170; PubMed Central PMCID: PMC9195238.

[12] Zhao X, Shen JP, Shu CL, Jin SS, Di HJ, Zhang LM, He JZ. Attenuation of antibiotic resistance genes in livestock manure through vermicomposting via Protaetia brevitarsis and its fate in a soil-vegetable system. Sci Total Environ. 2022 Feb 10;807(Pt 1):150781. doi: 10.1016/j.scitotenv.2021.150781. Epub 2021 Oct 5. PubMed PMID: 34624280.

[13] Xuan H, Gao P, Du B, Geng L, Wang K, Huang K, Zhang J, Huang T, Shu C. Characterization of Microorganisms from Protaetia brevitarsis Larva Frass. Microorganisms. 2022 Jan 28;10(2). doi: 10.3390/microorganisms10020311. PubMed PMID: 35208766; PubMed Central PMCID: PMC8880812.

[14] Wang M, Geng L, Xue B, Wang Z, Xu W, Shu C, Zhang J. Structure characteristics and function of a novel extracellular polysaccharide from Bacillus thuringiensis strain 4D19. Int J Biol Macromol. 2021 Oct 31;189:956-964. doi: 10.1016/j.ijbiomac.2021.08.193. Epub 2021 Aug 31. PubMed PMID: 34478795.

[15] Li M, Shu C, Ke W, Li X, Yu Y, Guan X, Huang T. Plant Polysaccharides Modulate Biofilm Formation and Insecticidal Activities of Bacillus thuringiensis Strains. Front Microbiol. 2021;12:676146. doi: 10.3389/fmicb.2021.676146. eCollection 2021. PubMed PMID: 34262542; PubMed Central PMCID: PMC8273441.

[16] Wang K, Liu Q, Liu C, Geng L, Wang G, Zhang J, Shu C. Dominant egg surface bacteria of Holotrichia oblita (Coleoptera: Scarabaeidae) inhibit the multiplication of Bacillus thuringiensis and Beauveria bassiana. Sci Rep. 2021 May 4;11(1):9499. doi: 10.1038/s41598-021-89009-6. PubMed PMID: 33947948; PubMed Central PMCID: PMC8096819.

[17] Shabbir MZ, He L, Shu C, Yin F, Zhang J, Li ZY. Assessing the Single and Combined Toxicity of Chlorantraniliprole and Bacillus thuringiensis (GO33A) against Four ed Strains of Plutella xylostella (Lepidoptera: Plutellidae), and a Gene Expression Analysis. Toxins (Basel). 2021 Mar 22;13(3). doi: 10.3390/toxins13030227. PubMed PMID: 33809820; PubMed Central PMCID: PMC8004223.

[18] Wang Z, Wang K, Bravo A, Soberón M, Cai J, Shu C, Zhang J. Coexistence of cry9 with the vip3A Gene in an Identical Plasmid of Bacillus thuringiensis Indicates Their Synergistic Insecticidal Toxicity. J Agric Food Chem. 2020 Nov 25;68(47):14081-14090. doi: 10.1021/acs.jafc.0c05304. Epub 2020 Nov 12. PubMed PMID: 33180493.

[19] Shu C, Yan G, Huang S, Geng Y, Soberón M, Bravo A, Geng L, Zhang J. Characterization of Two Novel Bacillus thuringiensis Cry8 Toxins Reveal Differential Specificity of Protoxins or Activated Toxins against Chrysomeloidea Coleopteran Superfamily. Toxins (Basel). 2020 Oct 5;12(10). doi: 10.3390/toxins12100642. PubMed PMID: 33027918; PubMed Central PMCID: PMC7599620.

[20] Wei P, Li Y, Lai D, Geng L, Liu C, Zhang J, Shu C, Liu R. Protaetia brevitarsis larvae can feed on and convert spent mushroom substrate from Auricularia auricula and Lentinula edodes cultivation. Waste Manag. 2020 Aug 1;114:234-239. doi: 10.1016/j.wasman.2020.07.009. Epub 2020 Jul 15. PubMed PMID: 32682088.

[21] Cao B, Shu C, Geng L, Song F, Zhang J. Cry78Ba1, One Novel Crystal Protein from Bacillus thuringiensis with High Insecticidal Activity against Rice Planthopper. J Agric Food Chem. 2020 Feb 26;68(8):2539-2546. doi: 10.1021/acs.jafc.9b07429. Epub 2020 Feb 17. PubMed PMID: 32023056.

[22] Liu Y, Zhou Z, Wang Z, Zhong B, Shu C, Zhang J. Replacement of loop2 and 3 of Cry1Ai in domain II affects specificity to the economically important insect Bombyx mori. J Invertebr Pathol. 2020 Jan;169:107296. doi: 10.1016/j.jip.2019.107296. Epub 2019 Nov 26. PubMed PMID: 31778713.

[23] Wang K, Shu C, Zhang J. Effective bacterial insecticidal proteins against coleopteran pests: A review. Arch Insect Biochem Physiol. 2019 Nov;102(3):e21558. doi: 10.1002/arch.21558. Epub 2019 May 15. Review. PubMed PMID: 31094011.

[24] Guo L, Geng L, Sun X, Wang M, Shu C, Zhang J. [Preparation and purification of Cry1Ah protein candidate reference material]. Sheng Wu Gong Cheng Xue Bao. 2019 Aug 25;35(8):1511-1519. doi: 10.13345/j.cjb.190053. PubMed PMID: 31441622.

[25] Wang Y, Quan Y, Yang J, Shu C, Wang Z, Zhang J, Gatehouse AMR, Tabashnik BE, He K. Evolution of Asian Corn Borer Resistance to Bt Toxins Used Singly or in Pairs. Toxins (Basel). 2019 Aug 6;11(8). doi: 10.3390/toxins11080461. PubMed PMID: 31390820; PubMed Central PMCID: PMC6723947.

[26] Geng J, Jiang J, Shu C, Wang Z, Song F, Geng L, Duan J, Zhang J. Bacillus thuringiensis Vip1 Functions as a Receptor of Vip2 Toxin for Binary Insecticidal Activity against Holotrichia parallela. Toxins (Basel). 2019 Jul 25;11(8). doi: 10.3390/toxins11080440. PubMed PMID: 31349641; PubMed Central PMCID: PMC6723666.

[27] Shan Y, Shu C, He K, Cheng X, Geng L, Xiang W, Zhang J. Characterization of a Novel Insecticidal Protein Cry9Cb1 from Bacillus thuringiensis. J Agric Food Chem. 2019 Apr 3;67(13):3781-3788. doi: 10.1021/acs.jafc.9b00385. Epub 2019 Mar 21. PubMed PMID: 30865469.

[28] Wang K, Li P, Gao Y, Liu C, Wang Q, Yin J, Zhang J, Geng L, Shu C. De novo genome assembly of the white-spotted flower chafer (Protaetia brevitarsis). Gigascience. 2019 Apr 1;8(4). doi: 10.1093/gigascience/giz019. PubMed PMID: 30949689; PubMed Central PMCID: PMC6449472.

[29] Sun X, Wang M, Guo L, Shu C, Zhang J, Geng L. Guanidine thiocyanate solution facilitates sample collection for plant rhizosphere microbiome analysis. PeerJ. 2019;7:e6440. doi: 10.7717/peerj.6440. eCollection 2019. PubMed PMID: 30809445; PubMed Central PMCID: PMC6385689.

[30] Li Y, Fu T, Geng L, Shi Y, Chu H, Liu F, Liu C, Song F, Zhang J, Shu C. Protaetia brevitarsis larvae can efficiently convert herbaceous and ligneous plant residues to humic acids. Waste Manag. 2019 Jan;83:79-82. doi: 10.1016/j.wasman.2018.11.010. Epub 2018 Nov 13. PubMed PMID: 30514474.

[31] Wang Y, Liu Y, Zhang J, Crickmore N, Song F, Gao J, Shu C. Cry78Aa, a novel Bacillus thuringiensis insecticidal protein with activity against Laodelphax striatellus and Nilaparvata lugens. J Invertebr Pathol. 2018 Oct;158:1-5. doi: 10.1016/j.jip.2018.07.007. Epub 2018 Jul 11. PubMed PMID: 30017953.

[32] Wang K, Shu C, Soberón M, Bravo A, Zhang J. Systematic characterization of Bacillus Genetic Stock Center Bacillus thuringiensis strains using Multi-Locus Sequence Typing. J Invertebr Pathol. 2018 Jun;155:5-13. doi: 10.1016/j.jip.2018.04.009. Epub 2018 Apr 30. PubMed PMID: 29723494.

[33] Geng LL, Shao GX, Raymond B, Wang ML, Sun XX, Shu CL, Zhang J. Subterranean infestation by Holotrichia parallela larvae is associated with changes in the peanut (Arachis hypogaea L.) rhizosphere microbiome. Microbiol Res. 2018 Jun;211:13-20. doi: 10.1016/j.micres.2018.02.008. Epub 2018 Mar 23. PubMed PMID: 29705202.

[34] Liu Y, Wang Y, Shu C, Lin K, Song F, Bravo A, Soberón M, Zhang J. Cry64Ba and Cry64Ca, Two ETX/MTX2-Type Bacillus thuringiensis Insecticidal Proteins Active against Hemipteran Pests. Appl Environ Microbiol. 2018 Feb 1;84(3). doi: 10.1128/AEM.01996-17. Print 2018 Feb 1. PubMed PMID: 29150505; PubMed Central PMCID: PMC5772221.

[35] Lili G, Deng X, Minhong Z, Changlong S, Jinghai F, Fuping S, Fan L, Jie Z. High-throughput Sequencing-based Analysis of the Intestinal Microbiota of Broiler Chickens Fed Genetically Modified Rice Expressing Cry1Ac/Cry1Ab Chimeric Bacillus thuringiensis Protein. J Poult Sci. 2018;55(1):10-16. doi: 10.2141/jpsa.0170029. Epub 2017 Aug 25. PubMed PMID: 32055151; PubMed Central PMCID: PMC6756379.

[36] Li K, Wei H, Shu C, Zhang S, Cao Y, Luo C, Yin J. Identification and comparison of candidate odorant receptor genes in the olfactory and non-olfactory organs of Holotrichia oblita Faldermann by transcriptome analysis. Comp Biochem Physiol Part D Genomics Proteomics. 2017 Dec;24:1-11. doi: 10.1016/j.cbd.2017.07.001. Epub 2017 Jul 24. PubMed PMID: 28756307.

[37] Shu C, Zhang F, Chen G, Joseph L, Barqawi A, Evans J, Song F, Li G, Zhang J, Crickmore N. A natural hybrid of a Bacillus thuringiensis Cry2A toxin implicates Domain I in specificity determination. J Invertebr Pathol. 2017 Nov;150:35-40. doi: 10.1016/j.jip.2017.09.002. Epub 2017 Sep 6. PubMed PMID: 28888766.

[38] Tian X, Shi Y, Geng L, Chu H, Zhang J, Song F, Duan J, Shu C. Template Preparation Affects 16S rRNA High-Throughput Sequencing Analysis of Phyllosphere Microbial Communities. Front Plant Sci. 2017;8:1623. doi: 10.3389/fpls.2017.01623. eCollection 2017. PubMed PMID: 29018461; PubMed Central PMCID: PMC5622981.

[39] Jiang J, Huang Y, Shu C, Soberón M, Bravo A, Liu C, Song F, Lai J, Zhang J. Holotrichia oblita Midgut Proteins That Bind to Bacillus thuringiensis Cry8-Like Toxin and Assembly of the H. oblita Midgut Tissue Transcriptome. Appl Environ Microbiol. 2017 Jun 15;83(12). doi: 10.1128/AEM.00541-17. Print 2017 Jun 15. PubMed PMID: 28389549; PubMed Central PMCID: PMC5452822.

[40] Sun C, Geng L, Wang M, Shao G, Liu Y, Shu C, Zhang J. No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp. Microbiologyopen. 2017 Feb;6(1). doi: 10.1002/mbo3.404. Epub 2016 Sep 25. PubMed PMID: 27666942; PubMed Central PMCID: PMC5300882.

[41] Zhou Z, Wang Z, Liu Y, Liang G, Shu C, Song F, Zhou X, Bravo A, Soberón M, Zhang J. Identification of ABCC2 as a binding protein of Cry1Ac on brush border membrane vesicles from Helicoverpa armigera by an improved pull-down assay. Microbiologyopen. 2016 Aug;5(4):659-69. doi: 10.1002/mbo3.360. Epub 2016 Apr 1. PubMed PMID: 27037552; PubMed Central PMCID: PMC4985599.

[42] Zhang F, Shu C, Crickmore N, Li Y, Song F, Liu C, Chen Z, Zhang J. Use of Redundant Exclusion PCR To Identify a Novel Bacillus thuringiensis Cry8 Toxin Gene from Pooled Genomic DNA. Appl Environ Microbiol. 2016 Jul 1;82(13):3808-3815. doi: 10.1128/AEM.00862-16. Print 2016 Jul 1. PubMed PMID: 27084017; PubMed Central PMCID: PMC4907210.

[43] Dai R, Su X, Jin X, Zhang J, Guan X, Chen C, Shu C, Huang T. Cloning, Expression, Purification, and Insecticidal Activity of a Novel Cry1Na3 Toxin From Bacillus thuringiensis BRC-ZYR2. J Econ Entomol. 2016 May 23;109(3):1064-1070. doi: 10.1093/jee/tow031. PubMed PMID: 27170729.

[44] Shu C, Zhou J, Crickmore N, Li X, Song F, Liang G, He K, Huang D, Zhang J. In vitro template-change PCR to create single crossover libraries: a case study with B. thuringiensis Cry2A toxins. Sci Rep. 2016 Apr 21;6:23536. doi: 10.1038/srep23536. PubMed PMID: 27097519; PubMed Central PMCID: PMC4838838.

[45] Shu C, Tan S, Yin J, Soberón M, Bravo A, Liu C, Geng L, Song F, Li K, Zhang J. Assembling of Holotrichia parallela (dark black chafer) midgut tissue transcriptome and identification of midgut proteins that bind to Cry8Ea toxin from Bacillus thuringiensis. Appl Microbiol Biotechnol. 2015 Sep;99(17):7209-18. doi: 10.1007/s00253-015-6755-2. Epub 2015 Jul 2. PubMed PMID: 26135984.

[46] Li L, Ji G, Ye C, Shu C, Zhang J, Liang C. PlantOrDB: a genome-wide ortholog database for land plants and green algae. BMC Plant Biol. 2015 Jun 26;15:161. doi: 10.1186/s12870-015-0531-4. PubMed PMID: 26112452; PubMed Central PMCID: PMC4481079.

[47] Bi Y, Zhang Y, Shu C, Crickmore N, Wang Q, Du L, Song F, Zhang J. Genomic sequencing identifies novel Bacillus thuringiensis Vip1/Vip2 binary and Cry8 toxins that have high toxicity to Scarabaeoidea larvae. Appl Microbiol Biotechnol. 2015 Jan;99(2):753-60. doi: 10.1007/s00253-014-5966-2. Epub 2014 Aug 1. PubMed PMID: 25081556.

[48] Li H, Liu R, Shu C, Zhang Q, Zhao S, Shao G, Zhang X, Gao J. Characterization of one novel cry8 gene from Bacillus thuringiensis strain Q52-7. World J Microbiol Biotechnol. 2014 Dec;30(12):3075-80. doi: 10.1007/s11274-014-1734-9. Epub 2014 Sep 14. PubMed PMID: 25218711.

[49] Li Y, Shu C, Zhang X, Crickmore N, Liang G, Jiang X, Liu R, Song F, Zhang J. Mining rare and ubiquitous toxin genes from a large collection of Bacillus thuringiensis strains. J Invertebr Pathol. 2014 Oct;122:6-9. doi: 10.1016/j.jip.2014.07.006. Epub 2014 Aug 6. PubMed PMID: 25108136.

[50] Geng L, Duan X, Liang C, Shu C, Song F, Zhang J. Mining tissue-specific contigs from peanut (Arachis hypogaea L.) for promoter cloning by deep transcriptome sequencing. Plant Cell Physiol. 2014 Oct;55(10):1793-801. doi: 10.1093/pcp/pcu111. Epub 2014 Sep 16. PubMed PMID: 25231965.

[51] Zhou C, Zheng Q, Peng Q, Du L, Shu C, Zhang J, Song F. Screening of cry-type promoters with strong activity and application in Cry protein encapsulation in a sigK mutant. Appl Microbiol Biotechnol. 2014 Sep;98(18):7901-9. doi: 10.1007/s00253-014-5874-5. Epub 2014 Jun 14. PubMed PMID: 24928660.

[52] Shan Y, Shu C, Crickmore N, Liu C, Xiang W, Song F, Zhang J. Cultivable gut bacteria of scarabs (Coleoptera: Scarabaeidae) inhibit Bacillus thuringiensis multiplication. Environ Entomol. 2014 Jun;43(3):612-6. doi: 10.1603/EN14028. Epub 2014 May 7. PubMed PMID: 24780240.