当前位置: 首页» 人才队伍» 研究员

马春森

      

马春森,中国农业科学院植物保护研究所研究员,昆虫生态学和预测专家,果树害虫研究组组长,现代农业技术产业体系葡萄虫害防控岗位科学家,国家植保数据中心常务副主任, 博士生导师。1983年于山西农业大学获农学学士学位,1989年于中国农业科学院研究生院获农学硕士学位,1996-2000年于德国汉诺威大学攻读博士并获园艺学博士学位。现兼中国昆虫学会理事;中国植物保护学会病虫测报专业委员会 副主任委员;中国植物保护学会葡萄病虫害防治专业委员会 副主任委员;承担部分SCI期刊编辑工作,Associate editor:Frontiers in Ecology and Evolution, Editorial board: Current Research in Insect Science, Plos Climate, Biology。

在国际上率先开展气候变化下害虫种群动态及其预测技术研究,开拓了昆虫气候变化生物学领域的技术路线和研究方法,取得了重要进展,发展了气候变化生态学理论。创建了害虫气候变化生物学和果树害虫实验室,揭示了害虫对气候变化的行为适应、生理适应和进化适应机制以及气候变化对害虫种群动态的影响机制。夜间暖化对昆虫新影响的发现挑战了Kaufman effect,被选入Faculty of 1000 Premier论文。揭示了麦蚜优势种变迁的生态和进化机制,发表在领域著名期刊Global Change Biology和Functional Ecology,著名专家Kingsolver在同刊撰文对该研究进行了聚焦述评。受邀在Annual Review of Entomology发表文章,系统阐明了昆虫在极端气候下的生存策略并指明了该领域未来方向。是我国昆虫学者在生态学主流期刊上发表文章最活跃的研究组之一。这些研究为我国昆虫气候变化生态学和预测学的研究奠定了基石,与国际一流实验室开展密切交流合作,提升了我国气候变化生态学和昆虫生态学在国际上的地位。在农业部领导下,筹备组建了国家植物保护数据中心,系统制订了重大病虫害观测指标体系、标准化观测运行规范,产生了首批数据。针对果树病虫害识别难的问题,在最后1厘米处下功夫,重点开发了基于种植者自然思维的便捷识别系统,基于智能深度学习的果树健康诊断系统。揭示了气候通过调节滞育影响春季种群的机制。开发了基于趋光节律的天敌友好型灯光诱杀技术等系列果树绿色防控技术。主持承担“国家重点研发”、“国家自然基金重点国际合作”、“863”和农业行业专项、国家自然基金面上项目等课题;开发出农业害虫种群预测通用模型、病虫害测报网络数据库、小麦及苹果病虫害远程诊断等病虫害预测软件10余套(软件著作权);发表论文140余篇。

研究方向:1)昆虫气候变化生态学:以具有典型滞育特征的果树食心虫,生活周期短增殖快的蚜虫,以及无滞育广布种小菜蛾为研究对象,揭示气候变化对昆虫个体和种群的效应和昆虫对气候变暖的行为适应、生理适应和遗传适应,基于种群动态模拟模型预测气候变化条件下害虫种群动态情景。2)农作物病虫害监测:病虫害数量和质量的长期监测指标体系和数据采集标准规范;3)果树害虫监测预警与防控:葡萄害虫种类识别、生物学、生态学、监测预警与综合防控技术。

论文节选(*通讯作者)

1. Wang XJ, Ma CS* 2022. Challenge generality of prediction based on Jensen’s inequality: Moderate and large temperature fluctuations can lead to opposite performance deviation at high mean temperature. Entomologia Generalis, 42: 681–689. https://doi.org/10.1127/entomologia/2022/1410 (IF 6.6一区Top)

2. Harvey JA, Tougeron K, Gols R ……Ma,CS, Ma G……Chown SL. 2022. Scientists’ warning on climate change and insects. Ecological Monographs. 2022;e1553. https://doi.org/10.1002/ecm.1553 (IF 9.8 一区Top 75 scientists co-authored)

3. Zhu L, Xue Q, Ma G, Ma CS* 2022 Climate warming exacerbates plant disease through enhancing commensal interaction of co-infested insect vectors. Journal of Pest Science, https://doi.org/10.1007/s10340-022-01574-5 (IF 5.7 一区Top)

4. Wang XJ, Ma CS* 2022. Can laboratory-reared aphid populations reflect the thermal performance of field populations in studies on pest science and climate change biology? Journal of Pest Science https://doi.org/10.1007/s10340-022-01565-6 (IF 5.7 一区Top)

5. Yin W, Hoffmann AA, Bai CM, and Ma CS*. 2022. A conservative oviposition preference in spider mites for complex habitats as a preventive strategy for reducing predation risk. Entomologia Generalis, https://doi.org/10.1127/entomologia/2021/1282 (IF 6.6 一区Top)

6. Nyamukondiwa C*, Machekano H, Chidawanyika F, Mutamiswa R, Ma G and Ma CS* 2022. Geographic dispersion of invasive crop pests: the role of basal, plastic climate stress tolerance and other complementary traits in the tropics. Current Opinion in Insect Science 50:100878. https://doi.org/10.1016/j.cois.2022.100878 (IF 5.3 一区Top)

7. Ma G. and Ma CS* 2022. Potential distribution of invasive crop pests under climate change: incorporating mitigation responses of insects into prediction models. 2021, Current Opinion in Insect Science, 49:15-21. https://doi.org/10.1016/j.cois.2021.10.006 (IF 5.3 一区Top)

8. Ma CS*, Zhang W*, Peng Y, Zhao F, Chang XQ, Xing K, Zhu L, Ma G, Yang HP, Rudolf VHW. 2021. Climate warming promotes pesticide resistance through expanding overwintering range of a global pest. Nature Communications, 12, 5351 (2021). https://doi.org/10.1038/s41467-021-25505-7 (IF 17.7 一区Top)

9. Ma CS*, Ma G, Pincebourde S. Survive a Warming Climate: Insect Responses to Extreme High Temperatures. Annual Review of Entomology, 2021, 66: 163-184. https://doi.org/10.1146/annurev-ento-041520-074454 (IF 22.7, Altmetric score 102)

10. Zhu L, Hoffmann AA, Li SM, Ma CS*. 2021. Extreme climate shifts pest dominance hierarchy through thermal evolution and transgenerational plasticity. Functional Ecology, 2021, 35:1524-1537. https://doi.org/10.1111/1365-2435.13774 (IF 6.3 一区 Top) (Functional Ecology Spotlight Kingsolver et al. 2021) https://doi.org/10.1111/1365-2435.13820

11. Ma G, Bai CM, Rudolf VHW, Ma CS*. 2021. Night warming alters mean warming effects on predator–prey interactions by modifying predator demographics and interaction strengths. Functional Ecology, 2021, 35:2094–2107. https://doi.org/10.1111/1365-2435.13833 (IF 6.3 一区Top)

12. Zhu L, Wang L, Ma CS* 2019. Sporadic short temperature events cannot be neglected in predicting impacts of climate change on small insects. Journal of Insect Physiology 112 (2019) 48–56. https://doi.org/10.1016/j.jinsphys.2018.12.003

13. Zhao F, Xing K, Hoffmann AA and Ma CS* 2019. The importance of timing of heat events for predicting the dynamics of aphid pest populations. Pest Management Science 75: 1866–1874. https://doi.org/10.1002/ps.5344 (IF 4.5 一区Top)

14. Ma CS*, Lin Wang, Zhang W, Volker H. W. Rudolf (2018) Resolving biological impacts of multiple heat waves: interaction of hot and recovery days. Oikos, 127: 622–633. https://doi.org/10.1111/oik.04699 (IF 4.5 二区Top)

15. Fei Zhao, Ary A. Hoffmann, Kun Xing, Chun-Sen Ma* (2017) Life stages of an aphid living under similar thermal conditions differ in thermal performance. Journal of Insect Physiology http://dx.doi.org/10.1016/j.jinsphys.2017.03.003

16. Wei Zhang, Volker H. W. Rudolf, Chun-Sen Ma* (2015) Stage-specific heat effects: timing and duration of heat waves alter demographic rates of a global insect pest. Oecologia 179:947–957. https://doi.org/10.1007/s00442-015-3409-0

17. Gang Ma, Volker H. W. Rudolf, Chun-Sen Ma* (2015) Extreme temperature events alter demographic rates, relative fitness, and community structure. Global Change Biology 21, 1794–1808. https://doi.org/10.1111/gcb.12654 (IF 8.4 一区Top)

18. Wei Zhang, Xiang-Qian Chang, Ary A. Hoffmann, Shu Zhang*, Chun-Sen Ma* (2015) Impact of hot events at different developmental stages of a moth: the closer to adult stage, the less reproductive output. Scientific Reports, 5:10436. https://doi.org/10.1038/srep10436

19. Ma Gang, Hoffmann A. Ary, Chun-Sen Ma* (2015) Daily temperature extremes play an important role in predicting thermal effects. Journal of Experimental Biology, 218(14)2289-2296. https://doi.org/10.1242/jeb.122127

20. Fei Zhao, Wei Zhang, Ary A. Hoffmann and Chun-Sen Ma* (2014) Night warming on hot days produces novel impacts on development, survival and reproduction in a small arthropod. Journal of Animal Ecology 83:769-778.  https://doi.org/10.1111/1365-2656.12196 (F 1000 Prime)(IF 4.5 一区Top)